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Disclaimer

This talk comes in two parts, a general philosophy part and a case
study part
• The general part applies to many (all?) long-running scientific

software projects
• The solutions from our case study may or may not apply to your

project; they’re meant as examples
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Outline

• Problems faced by long-lived scientific codes
• LANL’s experience in the xRage code project
• Recommendations for other projects

Los Alamos National Laboratory 2018-01-17 | 3



Long-lived scientific codes

• Discussions of best software practices sometimes assume
(implicitly?) that you’re starting a new project and a new code

• But what if you have an ongoing, years- or decades-old project?
– Large, pre-existing code base
– Existing code team with established habits
– Significant user base, already using the code regularly

• Often such projects have major challenges to software quality
– Complex, hastily-written code
– Incomplete testing
– Inadequate documentation
– Little or no software process
– A culture that says, “Why should

we do all this fancy process stuff?
We’re getting along fine without it!”
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What do you mean by “getting along fine”?

• Historically, it has usually meant that the code:
– Has the capabilities the users want
– And has them ASAP

• This approach can be successful in the short term. . .
– Can build up a user base
– Can meet deliverables, produce papers, get grants renewed, etc.

• . . . but it has problems that show up in the longer term
– Code is written hastily, hard to understand
– Design is ad-hoc
– Difficult for code team to maintain, extend
– Difficult for new team members to learn
– Difficult to optimize for new architectures

• In other words, it’s not sustainable
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What do you mean by “getting along fine”? (2)

• A modern, better definition would be that the code:
– Is understandable, maintainable
– Is extensible
– Is well-tested
– Is well-documented
– Is portable to modern architectures
– . . . And still has the capabilities the users want
– . . . And has them (reasonably) quickly

• This is more sustainable for the long term
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Changing practices requires changing values
and culture

• A project decides what it values, and grows a culture that reflects
those values

• This affects many aspects of a code project:
– Languages, programming models, tools used (or not used)
– Staffing (how many developers? what background?)
– Training, career development
– Performance evaluations
– Tasking, scheduling, deliverables

• These all reinforce each other, push the project in a certain
direction

• It’s very hard to change that direction without (at least partly)
changing values and culture
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Changing practices can require changing code

• Sometimes best practices and modern tools have built-in
assumptions that older codes don’t satisfy:
– Unit testing assumes self-contained units
– Shared ownership of code assumes understandable code that any

developer can reason about
– And so on. . .

• Result: changing practices may have to go hand-in-hand with
changing code
– This may make starting the process harder
– But once it does start, it can become a “virtuous cycle”

So what does it look like to put all this into practice?
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Case study: The LANL xRage code

• xRage is an Eulerian AMR
radiation-hydrodynamics code

• Original code written ∼1990
• Has been used successfully in

several application areas
• Contains about 470K lines of

source code
– Not counting numerous

third-party libraries, from LANL
and elsewhere

• Mostly Fortran 90, some C/C++
• MPI-only parallelism

xRage applications:
asteroid impact simulations,
shape charge experiments,
Inertial Confinement Fusion

simulations
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The need for modernizing xRage

20+ years of high-pressure work left xRage with significant
technical debt. This made it difficult to:
• understand the code flow or data flow
• maintain the code
• add new features
• train new developers as older staff retire
• refactor for advanced architectures, such as Trinity, Sierra, . . .

These factors (especially the
last two) made us realize that
things needed to change!
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Prerequisite #1:
Management support for culture change

Management saw the need for doing things differently, was willing to
make changes:
• Added a CS co-lead to the project
• Shifted project resources to support more CS/SE staff
• Allocated part of domain scientists’ time to modernization work
• Scaled back development of new physics features, milestone

commitments
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Prerequisite #2: Regression test suite

• Before: We had a regression
test suite, but it wasn’t
well-maintained

• As refactoring started: team
committed to keeping tests
passing (“wall of green”)

• At first, all tests were
integrated tests
– Unit tests were added later

• Nightly, weekly test runs are
automated, results emailed to
team

• Tests serve as a safety net as
we refactor
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What to tackle first?

Several possible tasks:
• Move to modern build system (e.g.

CMake)?
• Implement unit testing?
• Clean up our tangled dependency

structure?

We decided to do cleanup first
• Cleaner code has immediate benefit
• Can’t do unit tests on a hairball code
• Could use CMake on a hairball

code, but that’s not what CMake is
designed for

xRage dependency
graph, 2014-10-01

(the “hairball” graph)
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Untangling dependencies
• Any file could use data, call routines from any other file
• Our strategy to change this:

– Change existing code base in place
– Separate code into packages of related functionality with

well-defined interfaces
– Move toward a cleaner, simpler design

• Some techniques:
– Create derived types for package state, pass through argument lists
– Find misplaced code and move it to a proper place
– Lift some function calls (e.g., coupling) to higher-level packages
– Deprecate/remove unneeded calls
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Untangling dependencies (2)

After about 15 months of work, this
process led to a much simpler graph
(right)
• Graph is levelized, has no cycles!
• Interfaces between packages are

better-defined
• This makes it easier to understand,

reason about the code
• This enables other changes on a

per-package basis
– Unit testing, documentation
– Code cleanup
– Performance optimization
– Physics improvements xRage dependency graph,

2016-01-11
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Where we are now

Task list:
• Levelize dependency graph (complete)
• Refactor build system to use libraries, enforce levelization

(complete)
• Add unit tests (infrastructure complete, test writing ongoing)
• Document packages (ongoing)
• Clean up code within packages (ongoing)
• Work on performance optimization (ongoing)
• Move from home-grown build system to CMake (prototyped)
• Move from SVN version control to Git/Gitlab (planning)
• Set up Gitlab-CI continuous integration (planning)
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Some recommendations to other projects

• Get management support for culture change - this is crucial!
• Use regression tests as a safety net as you refactor
• Resist the temptation to move to a shiny new tool just because

it’s shiny and new
– Prioritize tasks/changes by value added to the project

• Find the right balance between code/process improvement and
user support
– Both are important!
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Resources

General resources:
• Lakos, Large-Scale C++ Software Design (1996)

– Specific mechanisms are now outdated, but...
– General principles still apply to all languages, not just C++

• Feathers, Working Effectively with Legacy Code

More details on xRage refactoring:
• Ferenbaugh et al., Modernizing a Long-Lived Production Physics

Code, SC16 poster
http://sc16.supercomputing.org/sc-archive/tech_poster/
tech_poster_pages/post196.html
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Resources (2)

Tools we’ve found useful for xRage:
• Understand static visual analysis tool

http://scitools.com

• Graphviz graph visualization for dependency graphs
http://graphviz.org

• pFUnit unit test framework for Fortran
http://pfunit.sourceforge.net

• Google Test unit test framework for C/C++
https://github.com/google/googletest
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Questions?

Thanks for your attention!

Charles Ferenbaugh
cferenba@lanl.gov
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